As discussed in my last Ed’s Threads, lithography has become patterning as evidenced by first use of Self-Aligned Quadruple Patterning (SAQP) in High Volume Manufacturing (HVM) of memory chips. Meanwhile, industry R&D hub imec has been investigating use of SAQP for “7nm” and “5nm” node finFET HVM, as reported as SPIE-AL this year in Paper 9782-12.
The specifications for pitches ranging from 18 to 24 nanometers are as follow:
- 7.0nm Critical Dimension (CD) after etch,
- 0.5nm (3sigma) CD uniformity (CDU), and
- <1nm Line-Width and Line-End Roughness (LWR and LER) assuming 10% of CD.
“Pitch walk”—variation in final pitch after multi-patterning—results in different line widths, and can result in subsequent excessive etch variation due to non-uniform loading effects. To keep the pitch walk in SAQP at acceptable levels for the 7nm node, the core-1 CDU has to be 0.5nm 3sigma and 0.8nm range after both litho and etch. In other presentations at SPIE-AL this year, the best LER after litho was ~4nm, improving to ~2nm after PEALD smoothing of sidewalls, but still double the desired spec.
The team at imec developed a SAQP flow using amorphous-Carbon (aC) and amorphous-Silicon (aSi) as the cores, and low-temperature Plasma-Enhanced Atomic-Layer Deposition (PEALD) of SiO2 for both sets of spacers. Bilayer DARC (SiOC) and BARC were used for reflectivity control. Compared to SAQP schemes where the mandrels are only aSi, imec claims that this approach saves 20% in cost due to the use of aC core and the elimination of etch-stopping-layers.
—E.K.